organic compounds

 $\mu = 0.65 \text{ mm}^{-1}$

T = 294 (2) K

 $R_{\rm int} = 0.039$

328 parameters

 $\Delta \rho_{\rm max} = 0.24 \text{ e} \text{ Å}^-$

 $\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

 $0.42 \times 0.28 \times 0.20 \text{ mm}$

3 standard reflections

every 100 reflections

intensity decay: 0.8%

H-atom parameters constrained

1942 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-(4-Methylphenyl)-3-(2-pyridyl)-4*H*-1,2,4-triazole

Liliana Mazur,^a Anna E. Koziol^a* and Bozena Modzelewska-Banachiewicz^b

^aDepartment of Crystallography, Faculty of Chemistry, Maria Curie-Sklodowska University, 20031 Lublin, Poland, and ^bDepartment of Organic Chemistry, Faculty of Pharmacy, Nicolaus Copernicus University, 85067 Bydgoszcz, Poland Correspondence e-mail: akoziol@hermes.umcs.lublin.pl

Received 12 June 2007; accepted 5 July 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.005 Å; R factor = 0.053; wR factor = 0.164; data-to-parameter ratio = 15.7.

The crystal structure of the title compound, $C_{14}H_{12}N_4$, is built from two symmetry-independent molecules which are nearly related by translation by the vector $\mathbf{a}/2$. The two molecules exhibit almost identical bond distances and angles but they show significantly different conformations. The relative orientations of the pyridyl and benzene rings about the triazole ring are different in the two molecules, and they pack differently in the crystal structure. Weak intermolecular C– $H \cdots N$, C– $H \cdots \pi$ and $\pi \cdots \pi$ interactions stabilize the crystal structure [the distance between the triazole ring centroids is 3.687 (4) Å].

Related literature

3,4-Diaryl-1,2,4-triazole derivatives have been reported by Mazur *et al.* (2004*a*,*b*), Chinnakali *et al.* (1999) and Rogers *et al.* (1990). For pyridine $C-H\cdots N$ interactions, see also Mootz & Wussow (1981). For related literature, see: Modzelewska (1991/1992).

b = 10.929 (3) Å

c = 11.647 (3) Å

 $\alpha = 105.21 (3)^{\circ}$

 $\beta = 99.49(2)^{\circ}$

Experimental

Crystal data

$C_{14}H_{12}N_4$	
$M_r = 236.28$	
Triclinic, P1	
a = 10.730(2)	Å

 $\gamma = 108.34 \ (2)^{\circ}$ $V = 1204.5 \ (6) \ \text{\AA}^3$ Z = 4Cu $K\alpha$ radiation

Data collection

Kuma KM-4 four-circle diffractometer Absorption correction: none 5413 measured reflections 5153 independent reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.164$ S = 0.965153 reflections

Table 1

Hydrogen-bond geometry (Å, $^\circ).$

The center of the pyridyl ring is denoted as π .

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C8a−H8a···N1b	0.93	2.83	3.502 (3)	130
C8a−H8a···N2b	0.93	2.89	3.502 (3)	125
C5a−H5a···N1a ⁱ	0.93	2.60	3.376 (3)	141
C11a−H11a···N6a ⁱⁱ	0.93	2.96	3.715 (3)	140
C18a−H18b· · ·N1a ⁱⁱⁱ	0.96	2.87	3.432 (4)	119
C5b−H5b···N1b ^{iv}	0.93	2.48	3.244 (3)	140
$C14b-H14b\cdots\pi^{v}$	0.93	3.05	3.951 (4)	164
C18a−H18a···N2b ^{vi}	0.96	2.69	3.623 (3)	164
C11b−H11b· · ·N6a ^{vii}	0.93	2.65	3.243 (3)	122
C17b−H17b···N1a ^{iv}	0.93	2.68	3.505 (4)	148

Symmetry codes: (i) -x, -y + 2, -z + 2; (ii) -x, -y + 1, -z + 1; (iii) x, y - 1, z; (iv) -x + 1, -y + 2, -z + 2; (v) -x + 1, -y + 1, -z + 1; (vi) x - 1, y - 1, z; (vii) x + 1, y, z.

Data collection: *KM-4 Software* (Kuma Diffraction, 1998); cell refinement: *KM-4 Software*; data reduction: *KM-4 Software*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL/PC* (Sheldrick, 1990); software used to prepare material for publication: *SHELXL97* and *enCIFer* (Allen *et al.*, 2004).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2137).

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Chinnakali, K., Fun, H.-K., Senthilvelan, A., Sriraghavan, K. & Ramakrishnan, V. T. (1999). Acta Cryst. C55, 1136–1138.
- Kuma Diffraction (1998). KM-4 Software. Version 10.3. Kuma Diffraction, Wroclaw, Poland.
- Mazur, L., Koziol, A. E. & Modzelewska-Banachiewicz, B. (2004a). Acta Cryst. E60, o2244–o2246.
- Mazur, L., Koziol, A. E. & Modzelewska-Banachiewicz, B. (2004b). Acta Cryst. E60, o2287-o2289.
- Modzelewska, B. (1991/1992). Ann. UMCS Sect. AA, 46/47, 67-72.
- Mootz, D. & Wussow, H.-G. (1981). J. Chem. Phys. 75, 1517-1522.
- Rogers, R. D., Park, M.-G. & Kevill, D. N. (1990). Acta Cryst. C46, 2218–2221. Sheldrick, G. M. (1990). SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, o3455 [doi:10.1107/S1600536807032990]

4-(4-Methylphenyl)-3-(2-pyridyl)-4H-1,2,4-triazole

L. Mazur, A. E. Koziol and B. Modzelewska-Banachiewicz

Comment

As an extension of our work on the structural characterization of simple 1,2,4-triazole derivatives, we report here the crystal and molecular structure of 4-(4-methylphenyl)-3-(2-pyridyl)-4*H*-1,2,4-triazole, (I). So far, only four structures of 3,4-diaryl-1,2,4-triazole derivatives have been described in literature [refcodes: WAKBEQ, HAMSUK, GOLYUB, VEXPIX; Mazur *et al.* (2004*a*; 2004*b*), Chinnakali *et al.* (1999) and Rogers *et al.* (1990)].

The crystal of the title compound (Fig. 1) contains two crystallographically independent molecules in the asymmetric unit. Molecules IA and IB are related by apseudo-translation along the *a* axis; the vector being about a/2. Corresponding bond lengths and angles are equal within experimental errors. The central five-membered triazole rings in both molecules have planar geometry. The N1=C5 and N2=C3 bonds display double-bond character, with the bond lengths of 1.282 (4), 1.306 (3) Å for molecule IA and 1.289 (3), 1.315 (3) Å for molecule IB. The N4—C3 and N4—C5 bonds, being in the range 1.353 (3) – 1.367 (3) Å, have an intermediate character. The remaining bond lengths show no unusual values. The only significant difference between the two independent molecules is in dihedral angles between the triazole/pyridyl and triazole/phenyl rings, which are 43.9 (2)°, 44.8 (2)° (molecule IA) and 23.1 (2)°, 60.4 (3)° (molecule IB) (Fig. 2). In a closely related compounds: 4-(4-methylphenyl)-3-(4-pyridyl)-4H-1,2,4-triazole (WAKBEQ), and 4-phenyl-3-(4-pyridyl)-4H-1,2,4-triazole (HAMSUK), they were 25.2 (3)°, 67.0 (3)° and 46.8 (4)°, 55.9 (3)°, respectively.

Analysis of the intermolecular contacts reveals existence of numerous C—H···N/ π and π ··· π interactions. The most characteristic motifs, observed in this structure, are centrosymmetric dimers created separately by the molecules IA and IB (Figs 3 and 4). Molecules forming these pairs are connected by short quite linear C5a—H5a···N1a and C5b—H5b···N1b hydrogen bonds, with interatomic C···N distances of 3.375 (3) and 3.243 (3) Å (Table 1). The same synthon [with C5···N1 distances of 3.336 (3) and 3.399 (3) Å] was observed in the structure of 3-(4-methoxyphenyl)-4-phenyl-4*H*-1,2,4-triazole (VEXPIX). The triazole N1a atom is also the acceptor in the C17*b*—H17*b*···N1a hydrogen bond. This interaction, accompanied by C11*b*—H11*b*···N6a contact, link adjacent centrosymetric dimers into tetramers. The closest distance between the central five-membered rings in neigbouring dimers indicate the existence of π ··· π interactions. The distances between the ring centroids of the triazole IA and IB systems are 3.687 (4) Å, with the dihedral angle between their planes of 1.0 (1) °. Other C—H···N and C—H··· π hydrogen bonds are also formed and they contribute to the structure stabilization (Table 1).

Experimental

The title compound was synthesized according to a literature method (Modzelewska, 1991/1992) in reaction of N3-substituted amidrazone with diethylethoxymethylene malonate. Needle-shaped orange single crystals, suitable for X-ray diffraction measurements, were obtained by recrystallization from methanol at room temperature. The melting point determined on a Boëtius microscope was 392 K.

Refinement

All H atoms were positioned geometrically and constrained, with C—H bond distances of 0.93 and 0.96Å for aromatic and methylene H atom, respectively. The displacement parameters of the H atoms were $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figures

Fig. 1. A view of the two independent molecules of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. Fit of the molecules IA (full lines) and IB (open lines).

Fig. 3. The packing arrangement of molecules IA, viewed along the *a* axis. Dashed lines indicate hydrogen bonds.

Fig. 4. The packing arrangement of molecules IB, viewed along the *a* axis. Dashed lines indicate hydrogen bonds.

4-(4-methylphenyl)-3-(2-pyridyl)-4H-1,2,4-triazole

Crystal data

$C_{14}H_{12}N_4$	Z = 4
$M_r = 236.28$	$F_{000} = 496$

Triclinic, <i>P</i> 1	$D_{\rm x} = 1.303 {\rm ~Mg~m}^{-3}$
Hall symbol: -P1	Cu K α radiation $\lambda = 1.54178$ Å
a = 10.730 (2) Å	Cell parameters from 40 reflections
<i>b</i> = 10.929 (3) Å	$\theta = 7-21^{\circ}$
c = 11.647 (3) Å	$\mu = 0.65 \text{ mm}^{-1}$
$\alpha = 105.21 \ (3)^{\circ}$	T = 294 (2) K
$\beta = 99.49 \ (2)^{\circ}$	Needle, orange
$\gamma = 108.34 \ (2)^{\circ}$	$0.42 \times 0.28 \times 0.20 \text{ mm}$
V = 1204.5 (6) Å ³	

Data collection

KM4 four-circle diffractometer	$R_{\rm int} = 0.039$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 80.3^{\circ}$
Monochromator: graphite	$\theta_{\min} = 4.5^{\circ}$
T = 293(2) K	$h = -13 \rightarrow 13$
ω -2 θ scans	$k = -12 \rightarrow 12$
Absorption correction: none	$l = 0 \rightarrow 14$
5413 measured reflections	3 standard reflections
5153 independent reflections	every 100 reflections
1942 reflections with $I > 2\sigma(I)$	intensity decay: 0.8%

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.053$	$w = 1/[\sigma^2(F_o^2) + (0.0867P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.164$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 0.96	$\Delta \rho_{max} = 0.24 \text{ e } \text{\AA}^{-3}$
5153 reflections	$\Delta \rho_{min} = -0.20 \text{ e } \text{\AA}^{-3}$
328 parameters	Extinction correction: SHELXL, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.0050 (7)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1A	0.1149 (3)	1.0190 (3)	0.8957 (2)	0.0818 (7)
N2A	0.1763 (3)	1.0022 (2)	0.7996 (2)	0.0752 (7)
C3A	0.1689 (3)	0.8757 (3)	0.7654 (2)	0.0593 (7)
N4A	0.1048 (2)	0.8077 (2)	0.83452 (18)	0.0605 (6)
C5A	0.0748 (3)	0.9036 (3)	0.9134 (2)	0.0719 (8)
H5A	0.0304	0.8873	0.9732	0.086*
N6A	0.1279 (2)	0.6903 (2)	0.58261 (18)	0.0600 (6)
C7A	0.2148 (3)	0.8145 (3)	0.6605 (2)	0.0555 (6)
C8A	0.3372 (3)	0.8835 (3)	0.6424 (3)	0.0646 (7)
H8A	0.3949	0.9693	0.6978	0.078*
C9A	0.3721 (3)	0.8224 (3)	0.5405 (3)	0.0731 (8)
H9A	0.4547	0.8663	0.5263	0.088*
C10A	0.2861 (3)	0.6981 (3)	0.4608 (3)	0.0701 (8)
H10A	0.3083	0.6562	0.3910	0.084*
C11A	0.1649 (3)	0.6344 (3)	0.4844 (2)	0.0649 (7)
H11A	0.1065	0.5487	0.4293	0.078*
C12A	0.0823 (3)	0.6717 (3)	0.8335 (2)	0.0562 (6)
C13A	0.1852 (3)	0.6218 (3)	0.8270 (2)	0.0659 (7)
H13A	0.2702	0.6775	0.8253	0.079*
C14A	0.1616 (3)	0.4907 (3)	0.8231 (2)	0.0726 (8)
H14A	0.2303	0.4567	0.8157	0.087*
C15A	0.0382 (4)	0.4071 (3)	0.8298 (2)	0.0708 (8)
C16A	-0.0622 (3)	0.4601 (3)	0.8402 (2)	0.0724 (8)
H16A	-0.1450	0.4065	0.8477	0.087*
C17A	-0.0419 (3)	0.5902 (3)	0.8395 (2)	0.0653 (7)
H17A	-0.1117	0.6231	0.8432	0.078*
C18A	0.0169 (5)	0.2674 (4)	0.8271 (3)	0.1151 (14)
H18A	-0.0729	0.2244	0.8347	0.138*
H18B	0.0835	0.2696	0.8945	0.138*
H18C	0.0260	0.2164	0.7503	0.138*
N1B	0.6153 (3)	1.0428 (3)	0.9064 (2)	0.0752 (7)
N2B	0.6802 (2)	1.0421 (2)	0.8128 (2)	0.0709 (7)
C3B	0.6823 (3)	0.9191 (3)	0.7699 (2)	0.0573 (6)
N4B	0.6204 (2)	0.8386 (2)	0.83221 (19)	0.0574 (5)
C5B	0.5823 (3)	0.9222 (3)	0.9150 (3)	0.0664 (7)
H5B	0.5375	0.8956	0.9715	0.080*
N6B	0.7863 (2)	0.7749 (2)	0.6687 (2)	0.0620(6)
C7B	0.7465 (3)	0.8793 (3)	0.6717 (2)	0.0571 (6)
C8B	0.7638 (3)	0.9491 (3)	0.5891 (3)	0.0719 (8)
H8B	0.7340	1.0211	0.5940	0.086*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C9B	0.8257 (3)	0.9106 (3)	0.4994 (3)	0.0764 (8)
H9B	0.8397	0.9567	0.4431	0.092*
C10B	0.8663 (3)	0.8033 (3)	0.4946 (3)	0.0754 (8)
H10B	0.9078	0.7742	0.4344	0.090*
C11B	0.8448 (3)	0.7394 (3)	0.5798 (3)	0.0700 (8)
H11B	0.8727	0.6663	0.5755	0.084*
C12B	0.5911 (2)	0.6965 (3)	0.8157 (2)	0.0524 (6)
C13B	0.5098 (3)	0.5971 (3)	0.7054 (2)	0.0666 (7)
H13B	0.4753	0.6208	0.6395	0.080*
C14B	0.4803 (3)	0.4615 (3)	0.6944 (3)	0.0705 (8)
H14B	0.4264	0.3943	0.6195	0.085*
C15B	0.5278 (3)	0.4222 (3)	0.7906 (3)	0.0644 (7)
C16B	0.6077 (3)	0.5243 (3)	0.8987 (3)	0.0727 (8)
H16B	0.6409	0.5007	0.9652	0.087*
C17B	0.6408 (3)	0.6611 (3)	0.9130 (2)	0.0666 (7)
H17B	0.6960	0.7282	0.9875	0.080*
C18B	0.4940 (4)	0.2749 (3)	0.7794 (3)	0.0997 (11)
H18D	0.5056	0.2265	0.7028	0.120*
H18E	0.4012	0.2350	0.7812	0.120*
H18F	0.5536	0.2688	0.8470	0.120*

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1A 0.097 (2)	0.0727 (17)	0.0715 (16)	0.0414 (16)	0.0257 (14)	0.0042 (13)
N2A 0.0837 (1	0.0649 (16)	0.0712 (15)	0.0312 (13)	0.0238 (13)	0.0081 (12)
C3A 0.0594 (1	0.0569 (16)	0.0549 (15)	0.0247 (13)	0.0127 (13)	0.0064 (12)
N4A 0.0658 (1	0.0629 (14)	0.0499 (11)	0.0308 (12)	0.0157 (11)	0.0063 (10)
C5A 0.082 (2)	0.077 (2)	0.0556 (15)	0.0389 (17)	0.0246 (15)	0.0054 (14)
N6A 0.0597 (1	14) 0.0637 (14)	0.0515 (12)	0.0230 (11)	0.0193 (11)	0.0090 (10)
C7A 0.0571 (1	0.0565 (16)	0.0530 (14)	0.0250 (13)	0.0143 (12)	0.0143 (12)
C8A 0.0555 (1	0.0635 (17)	0.0701 (17)	0.0195 (14)	0.0116 (14)	0.0216 (14)
C9A 0.0603 (1	18) 0.092 (2)	0.0764 (19)	0.0302 (18)	0.0286 (16)	0.0359 (18)
C10A 0.0701 (1	0.095 (2)	0.0597 (16)	0.0442 (18)	0.0280 (15)	0.0268 (16)
C11A 0.077 (2)	0.0669 (17)	0.0510 (14)	0.0335 (15)	0.0223 (14)	0.0092 (13)
C12A 0.0604 (1	0.0653 (17)	0.0412 (12)	0.0273 (14)	0.0149 (12)	0.0101 (11)
C13A 0.0654 (1	18) 0.075 (2)	0.0611 (16)	0.0336 (16)	0.0160 (14)	0.0209 (14)
C14A 0.081 (2)	0.086 (2)	0.0563 (16)	0.0413 (18)	0.0171 (15)	0.0220 (15)
C15A 0.101 (3)	0.0659 (19)	0.0439 (14)	0.0323 (18)	0.0156 (15)	0.0168 (12)
C16A 0.077 (2)	0.084 (2)	0.0523 (15)	0.0225 (17)	0.0209 (14)	0.0232 (15)
C17A 0.0659 (1	18) 0.082 (2)	0.0483 (14)	0.0320 (16)	0.0189 (13)	0.0146 (13)
C18A 0.154 (4)	0.092 (3)	0.092 (3)	0.035 (3)	0.031 (3)	0.033 (2)
N1B 0.0827 (1	18) 0.0697 (17)	0.0814 (16)	0.0419 (14)	0.0315 (14)	0.0164 (13)
N2B 0.0688 (1	0.0634 (15)	0.0861 (17)	0.0317 (13)	0.0259 (14)	0.0225 (13)
C3B 0.0567 (1	0.0567 (16)	0.0619 (15)	0.0266 (13)	0.0178 (13)	0.0179 (12)
N4B 0.0634 (1	14) 0.0603 (14)	0.0557 (12)	0.0322 (11)	0.0214 (10)	0.0166 (10)
C5B 0.0747 (1	19) 0.0677 (19)	0.0667 (16)	0.0385 (16)	0.0294 (15)	0.0174 (14)
N6B 0.0606 (1	0.0645 (14)	0.0703 (14)	0.0307 (12)	0.0259 (11)	0.0235 (11)

C7B	0.0528 (15)	0.0573 (16)	0.0599 (15)	0.0218 (13)	0.0139 (12)	0.0172 (12)
C8B	0.069 (2)	0.080 (2)	0.0763 (19)	0.0324 (16)	0.0207 (16)	0.0344 (16)
C9B	0.0662 (19)	0.097 (2)	0.0742 (19)	0.0267 (18)	0.0262 (16)	0.0413 (18)
C10B	0.0623 (19)	0.096 (2)	0.0659 (18)	0.0261 (17)	0.0258 (15)	0.0225 (16)
C11B	0.0616 (18)	0.0711 (19)	0.083 (2)	0.0304 (15)	0.0315 (16)	0.0209 (15)
C12B	0.0547 (15)	0.0554 (15)	0.0531 (14)	0.0263 (13)	0.0196 (12)	0.0176 (12)
C13B	0.0665 (18)	0.0672 (18)	0.0590 (16)	0.0230 (15)	0.0070 (14)	0.0189 (14)
C14B	0.068 (2)	0.0587 (18)	0.0703 (18)	0.0147 (15)	0.0133 (15)	0.0133 (14)
C15B	0.0644 (19)	0.0634 (17)	0.0708 (17)	0.0250 (15)	0.0269 (15)	0.0247 (14)
C16B	0.087 (2)	0.075 (2)	0.0647 (18)	0.0337 (17)	0.0207 (16)	0.0332 (15)
C17B	0.075 (2)	0.0691 (18)	0.0546 (15)	0.0292 (15)	0.0163 (14)	0.0175 (13)
C18B	0.108 (3)	0.071 (2)	0.128 (3)	0.030 (2)	0.046 (2)	0.042 (2)

Geometric parameters (Å, °)

N1A—C5A	1.282 (4)	N1B—C5B	1.289 (3)
N1A—N2A	1.390 (3)	N1B—N2B	1.386 (3)
N2A—C3A	1.306 (3)	N2B—C3B	1.315 (3)
C3A—N4A	1.360 (3)	C3B—N4B	1.367 (3)
C3A—C7A	1.470 (3)	С3В—С7В	1.468 (3)
N4A—C5A	1.360 (3)	N4B—C5B	1.353 (3)
N4A—C12A	1.425 (3)	N4B—C12B	1.437 (3)
С5А—Н5А	0.9300	C5B—H5B	0.9300
N6A—C11A	1.332 (3)	N6B—C11B	1.331 (3)
N6A—C7A	1.347 (3)	N6B—C7B	1.333 (3)
C7A—C8A	1.374 (4)	C7B—C8B	1.378 (4)
C8A—C9A	1.373 (4)	C8B—C9B	1.372 (4)
C8A—H8A	0.9300	C8B—H8B	0.9300
C9A—C10A	1.351 (4)	C9B—C10B	1.365 (4)
С9А—Н9А	0.9300	С9В—Н9В	0.9300
C10A—C11A	1.378 (4)	C10B—C11B	1.365 (4)
C10A—H10A	0.9300	C10B—H10B	0.9300
C11A—H11A	0.9300	C11B—H11B	0.9300
C12A—C17A	1.375 (4)	C12B—C17B	1.372 (3)
C12A—C13A	1.381 (3)	C12B—C13B	1.376 (3)
C13A—C14A	1.361 (4)	C13B—C14B	1.380 (4)
C13A—H13A	0.9300	C13B—H13B	0.9300
C14A—C15A	1.381 (4)	C14B—C15B	1.379 (4)
C14A—H14A	0.9300	C14B—H14B	0.9300
C15A—C16A	1.381 (4)	C15B—C16B	1.368 (4)
C15A—C18A	1.462 (4)	C15B—C18B	1.499 (4)
C16A—C17A	1.372 (4)	C16B—C17B	1.379 (4)
C16A—H16A	0.9300	C16B—H16B	0.9300
C17A—H17A	0.9300	C17B—H17B	0.9300
C18A—H18A	0.9600	C18B—H18D	0.9600
C18A—H18B	0.9600	C18B—H18E	0.9600
C18A—H18C	0.9600	C18B—H18F	0.9600
C5A—N1A—N2A	106.6 (2)	C5B—N1B—N2B	106.5 (2)
C3A—N2A—N1A	107.1 (2)	C3B—N2B—N1B	107.3 (2)

N2A—C3A—N4A	110.6 (2)	N2B—C3B—N4B	109.9(2)
N2A—C3A—C7A	123.9 (3)	N2B—C3B—C7B	123.6 (2)
N4A—C3A—C7A	125 3 (2)	N4B—C3B—C7B	126 5 (2)
C3A - N4A - C5A	103.7 (2)	C5B—N4B—C3B	104.1 (2)
C3A - N4A - C12A	129.2 (2)	C5B—N4B— $C12B$	124.7 (2)
C5A—N4A—C12A	126.9 (2)	C3B - N4B - C12B	131.1 (2)
N1A—C5A—N4A	112.1 (3)	N1B—C5B—N4B	112.2 (3)
N1A—C5A—H5A	123.9	N1B—C5B—H5B	123.9
N4A—C5A—H5A	123.9	N4B—C5B—H5B	123.9
C11A—N6A—C7A	117.1 (2)	C11B—N6B—C7B	116.4 (2)
N6A—C7A—C8A	123.0 (2)	N6B—C7B—C8B	123.2 (2)
N6A—C7A—C3A	115.8 (2)	N6B—C7B—C3B	116.6 (2)
C8A—C7A—C3A	121.2 (2)	C8B—C7B—C3B	120.2 (2)
C9A—C8A—C7A	118.3 (3)	C9B—C8B—C7B	118.8 (3)
C9A—C8A—H8A	120.9	C9B—C8B—H8B	120.6
С7А—С8А—Н8А	120.9	C7B—C8B—H8B	120.6
C10A—C9A—C8A	119.7 (3)	C10B—C9B—C8B	118.7 (3)
C10A—C9A—H9A	120.1	C10B—C9B—H9B	120.7
С8А—С9А—Н9А	120.1	C8B—C9B—H9B	120.7
C9A—C10A—C11A	119.1 (3)	C11B—C10B—C9B	118.6 (3)
C9A—C10A—H10A	120.5	C11B—C10B—H10B	120.7
C11A—C10A—H10A	120.5	C9B—C10B—H10B	120.7
N6A—C11A—C10A	122.9 (3)	N6B—C11B—C10B	124.3 (3)
N6A—C11A—H11A	118.6	N6B—C11B—H11B	117.9
C10A—C11A—H11A	118.6	C10B—C11B—H11B	117.9
C17A—C12A—C13A	119.9 (3)	C17B—C12B—C13B	120.4 (3)
C17A—C12A—N4A	120.0 (3)	C17B—C12B—N4B	119.1 (2)
C13A—C12A—N4A	120.1 (3)	C13B—C12B—N4B	120.5 (2)
C14A—C13A—C12A	119.7 (3)	C12B—C13B—C14B	118.9 (3)
C14A—C13A—H13A	120.2	C12B—C13B—H13B	120.6
C12A—C13A—H13A	120.2	C14B—C13B—H13B	120.6
C13A—C14A—C15A	121.5 (3)	C15B—C14B—C13B	122.3 (3)
C13A—C14A—H14A	119.2	C15B—C14B—H14B	118.9
C15A—C14A—H14A	119.2	C13B—C14B—H14B	118.9
C14A—C15A—C16A	118.0 (3)	C16B—C15B—C14B	117.0 (3)
C14A—C15A—C18A	120.2 (3)	C16B—C15B—C18B	120.7 (3)
C16A—C15A—C18A	121.8 (3)	C14B—C15B—C18B	122.3 (3)
C17A—C16A—C15A	121.2 (3)	C15B—C16B—C17B	122.5 (3)
C17A—C16A—H16A	119.4	C15B—C16B—H16B	118.7
C15A—C16A—H16A	119.4	C17B—C16B—H16B	118.7
C16A—C17A—C12A	119.6 (3)	C12B—C17B—C16B	119.0 (3)
C16A—C17A—H17A	120.2	C12B—C17B—H17B	120.5
C12A—C17A—H17A	120.2	C16B—C17B—H17B	120.5
C15A—C18A—H18A	109.5	C15B—C18B—H18D	109.5
C15A—C18A—H18B	109.5	C15B—C18B—H18E	109.5
H18A—C18A—H18B	109.5	H18D—C18B—H18E	109.5
C15A—C18A—H18C	109.5	C15B—C18B—H18F	109.5
H18A—C18A—H18C	109.5	H18D—C18B—H18F	109.5
H18B—C18A—H18C	109.5	H18E—C18B—H18F	109.5

C5A—N1A—N2A—C3A	0.0 (3)	C5B—N1B—N2B—C3B	0.1 (3)
N1A—N2A—C3A—N4A	0.2 (3)	N1B—N2B—C3B—N4B	0.2 (3)
N1A—N2A—C3A—C7A	175.9 (2)	N1B—N2B—C3B—C7B	-178.2 (2)
N2A—C3A—N4A—C5A	-0.3 (3)	N2B—C3B—N4B—C5B	-0.3 (3)
C7A—C3A—N4A—C5A	-176.0 (3)	C7B—C3B—N4B—C5B	178.0 (3)
N2A—C3A—N4A—C12A	-175.8 (3)	N2B—C3B—N4B—C12B	176.4 (2)
C7A—C3A—N4A—C12A	8.5 (4)	C7B-C3B-N4B-C12B	-5.3 (4)
N2A—N1A—C5A—N4A	-0.2 (3)	N2B—N1B—C5B—N4B	-0.3 (3)
C3A—N4A—C5A—N1A	0.3 (3)	C3B—N4B—C5B—N1B	0.4 (3)
C12A—N4A—C5A—N1A	176.0 (3)	C12B—N4B—C5B—N1B	-176.6 (2)
C11A—N6A—C7A—C8A	-0.1 (4)	C11B—N6B—C7B—C8B	-0.2 (4)
C11A—N6A—C7A—C3A	177.8 (2)	C11B—N6B—C7B—C3B	-179.8 (3)
N2A—C3A—C7A—N6A	-133.3 (3)	N2B-C3B-C7B-N6B	155.7 (3)
N4A—C3A—C7A—N6A	41.9 (4)	N4B-C3B-C7B-N6B	-22.4 (4)
N2A—C3A—C7A—C8A	44.7 (4)	N2B—C3B—C7B—C8B	-23.9 (4)
N4A—C3A—C7A—C8A	-140.2 (3)	N4B—C3B—C7B—C8B	158.1 (3)
N6A—C7A—C8A—C9A	-0.2 (4)	N6B—C7B—C8B—C9B	-0.4 (4)
C3A—C7A—C8A—C9A	-178.0 (2)	C3B—C7B—C8B—C9B	179.1 (3)
C7A—C8A—C9A—C10A	0.5 (4)	C7B-C8B-C9B-C10B	0.8 (5)
C8A—C9A—C10A—C11A	-0.6 (5)	C8B-C9B-C10B-C11B	-0.6 (5)
C7A—N6A—C11A—C10A	0.0 (4)	C7B—N6B—C11B—C10B	0.5 (4)
C9A—C10A—C11A—N6A	0.3 (5)	C9B—C10B—C11B—N6B	-0.1 (5)
C3A—N4A—C12A—C17A	-137.7 (3)	C5B—N4B—C12B—C17B	-60.9 (3)
C5A—N4A—C12A—C17A	47.7 (4)	C3B—N4B—C12B—C17B	123.0 (3)
C3A—N4A—C12A—C13A	42.7 (4)	C5B—N4B—C12B—C13B	116.6 (3)
C5A—N4A—C12A—C13A	-132.0 (3)	C3B—N4B—C12B—C13B	-59.6 (4)
C17A—C12A—C13A—C14A	1.9 (4)	C17B—C12B—C13B—C14B	-0.5 (4)
N4A—C12A—C13A—C14A	-178.4 (2)	N4B—C12B—C13B—C14B	-177.9 (2)
C12A—C13A—C14A—C15A	-2.3 (4)	C12B—C13B—C14B—C15B	1.0 (4)
C13A—C14A—C15A—C16A	0.3 (4)	C13B—C14B—C15B—C16B	-0.6 (4)
C13A—C14A—C15A—C18A	-179.1 (3)	C13B—C14B—C15B—C18B	179.0 (3)
C14A—C15A—C16A—C17A	2.2 (4)	C14B—C15B—C16B—C17B	-0.2 (4)
C18A—C15A—C16A—C17A	-178.4 (3)	C18B—C15B—C16B—C17B	-179.8 (3)
C15A—C16A—C17A—C12A	-2.6 (4)	C13B—C12B—C17B—C16B	-0.2 (4)
C13A—C12A—C17A—C16A	0.6 (4)	N4B—C12B—C17B—C16B	177.2 (2)
N4A—C12A—C17A—C16A	-179.1 (2)	C15B—C16B—C17B—C12B	0.6 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C8a—H8a…N1b	0.93	2.83	3.502 (3)	130
C8a—H8a…N2b	0.93	2.89	3.502 (3)	125
C5a—H5a…N1a ⁱ	0.93	2.60	3.376 (3)	141
C11a—H11a···N6a ⁱⁱ	0.93	2.96	3.715 (3)	140
C18a—H18b…N1a ⁱⁱⁱ	0.96	2.87	3.432 (4)	119
C5b—H5b…N1b ^{iv}	0.93	2.48	3.244 (3)	140
C14b—H14b··· π^{v}	0.93	3.05	3.951 (4)	164
C18a—H18a····N2b ^{vi}	0.96	2.69	3.623 (3)	164

C11b—H11b…N6a ^{vii}	0.93	2.65	3.243 (3)	122
C17b—H17b…N1a ^{iv}	0.93	2.68	3.505 (4)	148
Symmetry codes: (i) - <i>x</i> , - <i>y</i> +2, - <i>z</i> +2; (ii) - <i>x</i> , - <i>y</i> +1, -(vii) <i>x</i> +1, <i>y</i> , <i>z</i> .	-z+1; (iii) x, y-1, z; (iv) $-x+1$, $-y+2$, $-z+2$	(v) -x+1, -y+1, -z-	+1; (vi) <i>x</i> -1, <i>y</i> -1, <i>z</i> ;

Fig. 3

